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KNOWLEDGE We see how the 
robot's senses may be combined to give it a 
preates understanding of its environment 

OVER SIXTEEN The Commodore 16 is the 
successor to the Vic-20; we review this latest 
addition to the budget-priced range of home 
computers 

BIG MACRO Lotus 1-2-3 isa heavyweight 
spreadsheet for the more expensive micros 
like the IBM PC and Apricot. However, its 
working principles will soon filter down to 
home micros 

PERILOUS PURSUIT We continue to 
develop our adventure game in LOGO by ~ 
looking at movement between locations and 
the use of ‘perils’ such as poisonous snakes 

IDENTIFICATION TO IMPULSE NOISE | 
A weekly glossary of computing terms © 
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STORY LINE We develop a utility that will 
format output to the screen in our two text- 
based adventure games for the popular 
micros 

BREAK EVEN POINT Now that our 
debugger program is almost complete, we 
can begin to develop the remaining break- 
point routines 

SUM OF THE PARTS We revise all the 
ground that we have covered and publish 
appropriate circuit diagrams, before starting 
a new and ambitious project 

REFERENCE CARD We continue to list 
extracts from the Z80 programmers’ 
reference card 
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In previous instalments of this series we 
have discussed in depth the individual 
senses that contribute towards a robot’s 
‘intelligence’. Here we look at how these 
senses may be combined to give the robot a 
fuller understanding of its environment. 

While examining the sensors that a robot may use 
to gain some knowledge of the world in which it 
moves, we have considered each type of sensory 
input (sight, sound, touch) as if used in isolation. 
This is a fair assumption if the robot has a single 
sensor only but, in practice, the better robots will 
have several. To understand its environment, the 
robot must be able to integrate these sensory 
inputs by using each one as a check upon the 
others in order to build up a complete internal 
model of its world. | 

This is hardly surprising, because this — it seems 
— is how humans work, too. Our senses do not 
exist in isolation: we are constantly using the input 
from one sense as a check on that from another 
sense and the result is that we build up a very 
complete picture of our environment. The best 
example of this concerns the case studies of people 
who were blind from birth but who have been 
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i 6 == The robot butler is programmed 
to distinguish full and empty 
glasses. By synthesising what it 
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given their sight through surgery. These patients 
often surprise their surgeons with the speed at 
which they can make full use of their vision. This is _ 
because blind people have a very good knowledge 
of the world as a result of being able to touch 
objects, to move around in the world and to hear 
descriptions of the environment. Once they can 
see, therefore, they are able to use this knowledge 
and apply it to interpreting things they see. 

If we are to get the best out of robots we must 
allow for the interaction of their senses in just the 
same way as a person’s. For example, a robot that 
is designed to pick up objects may be able to pick 
them up ‘blind’, but it could do much better if it 
had a vision system because it could then locate 
the objects even if they were slightly misplaced, or 
at an angle other than the one the arm was 
programmed to expect. To do this, the robot must 
build up some kind of internal model of its 
environment by using the inputs from all its 
sensors. It must be able to look at the object and 
recognise it, it must then position its end effector 
and make the necessary calculations to pick the 
object up. 

The simplest illustration of this internal model is 
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sees on the tray, and the discrete 
differences in mass between a 

: full tray and an empty one, the 
» W&@ pre {ee butler determines at what point 

_ so . : it must return to the bar for 

At Your Service .. . 
We have created an imaginary 
robot butler that must 
synthesise a variety of sensory 
inputs to ply its trade. Its 
greatest problem is the fact that 
the guests are moving 
constantly, which means it must 
update its internal model of the 
Space accordingly 
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KEVIN JONES 

Robot 
Perception 

4x INTERSECTION 

In the illustration, with five 

areas of knowledge, there is 
one intersection of all five 

circles, four different 

intersections of four circles, 

Intersection Interface 
Robots usually have several 
sources of knowledge available 
to them: some are their pre- 

_ programmed databases (of 
common object silhouettes and 
infrared signatures, for 
example) some are experiential 
databases (such as the robot’s 
Current map ofits 
Surroundings), and some are 
sensory input channels (such as 
proximity and shape of objects). 
In the ideal case — when the 
robot ‘knows its location and 
‘understands’ its surroundings 
— then the intersection of these 
areas of knowledge should 
uniquely identify any object in 
the robot’s view 

AREAS OF KNOWLEDGE 

AREAS OF KNOWLEDGE 

the levels of intersection until 

a match is achieved; the 
higher the level of 
intersection, the more 
trustworthy the inference 

and so on. The robot checks 
any object in view against the 
five-times intersection, then 

against each of the four-times 
intersections, and so on down 

used by the maze-solving robot (see page 772) 
that uses sensors to work out the position of walls 
in the maze, building up an internal, two- 
dimensional map as it progresses. If we extend this 
thinking to an arm, the map must be three- 
dimensional. Add vision to the robot and the 
three-dimensional map immediately acquires 
colours, variations in brightness, and patterns that 
no touch sensor could have detected. With some 
measure of speech recognition, the robot adds 
spoken information to its model of the world. 

The problem confronting robot designers who 
are trying to enable the robot to make sense of its 
environment is that the world is not static and is 
constantly changing. Therefore, the robot also 
needs to be equipped with some means of allowing 
for such change. 

If we consider a robot that is programmed to 
perform some simple task like stacking bricks, the 
extent of this problem becomes clear. If the bricks 
are of unequal size, they must be positioned one 
on top of another very carefully and if the centre of 
gravity of each brick moves outside the base area 
of the bricks the whole pile will topple over. But 
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what knowledge does the robot have of the laws of 
gravity? And if the pile does topple over, would it 
understand what had happened and take the 
necessary action? 

PROBLEM SOLVING 
There are two main approaches to this pope, 
The first is to program the robot with data that 
includes a prescribed course of action for any 
eventuality. This would obviously limit the robot’s 
understanding to certain clearly-defined tasks. 
The~ brick-stacking robot would thus be 
programmed with instructions to ensure that each 
brick was placed exactly on top of the brick 
underneath, with the centre of gravity of one 
directly above the centre of gravity of another. 

The second approach is that advocated by those 
who argue that the only way a robot can ever 
understand its environment is by learning about it 
for itself. This is a field of computer science known > 

-as learning or heuristics. With this approach, the 
robot is programmed to perform a particular task 
and is provided with feedback, either from a 
person or from its own sensor, which will tell it how 
well it has done. With reference to this feedback, 
the robot will modify its own internal program — 
its own model of the world — in order to improve 
its performance and build up a ‘reference library’ 
that will help it cope with future tasks. The maze- 
solving robot acts in this way when it tries to find 
the best way out of a maze. By using its sensors, it 
can detect any blind alleys and will then take the 
necessary action by retreating back up the path 
and trying a new one. Unfortunately, there is no 
single learning program that may be used 
whenever a robot needs to learn a task. 

Once the robot has ‘learnt’ the necessary lesson, 
it needs to store whatever this is as a computer 
program. This task is known as knowledge 
representation. ‘Traditionally, the robot's 
knowledge may be stored as the lines of code that 
comprise an ordinary computer program. But 
artificial intelligence techniques have led to other 
approaches. There is a wide range of techniques 
in use, but the most common include production 
rules, semantic nets and frames. 

Production rules are in the form of IF. . .THEN 
constructs and are simple statements of fact. So, a 
robot may store its knowledge in the form: IF there 
is a brick wall in front of you THEN you cannot go 
forwards. There can be a whole sequence of rules 
of this type — they have the advantage of being 
easy to write and easy to understand for the 
programmer who is writing the program. The snag 
is that the robot has to understand them too — it 
needs what is often called an inference engineto be 
able to interpret these rules into a course of action. 
Programs using the production rules may be 
written in a conventional language, such as BASIC, 
but are more commonly written in a declarative 
language, such as PROLOG, which is better designed 
to handle this sort of knowledge. This is because, 
unlike the traditional languages, declarative 
languages do not execute their instructions one at 
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a time. Instead, the program continuously looks 
out for a given set of circumstances to which one or 
more of the rules might apply. When this happens, 
that particular rule ‘fires’ and is executed, which 
may in turn lead to other rules being fired. 

Semantic nets are a form of graph structures 
used to represent knowledge, and it is possible to 
think of them as just a network of relationships 
between various items of knowledge. The reason 
they are called semantic nets, rather than simply 
nets or graphs, is because the individual linkages 
can have some meaning in their own right. Instead 
of an arc linking two nodes being merely an arc, it 
can be an arc that indicates the existence of a 
special kind of relationship between those two 
nodes. So, a node labelled ‘table’ may be linked to 
a node labelled ‘furniture’. In this example, the 
relationship is that a table is a type of furniture — 
SO we can call the linkage a ‘type’ linkage. 

This kind of knowledge representation can be 
programmed in a conventional language. You 
might try it using BAsic and representing the 
various nodes and linkages by string variables. 
But, typically, one of the languages of artificial 
intelligence is more commonly used — such as Lisp 
— because this makes it much easier to express 
these complex named relationships. 

QUESTIONNAIRE 
Frames are rather like a blank questionnaire that is 
specially designed for each type of situation a 
robot might encounter. The idea is very easy to 
understand and could be readily programmed in 
BASIC using simple two-dimensional string arrays 
— one dimension for the ‘question’ and another 
for the ‘answers’. 

In this approach, the robot is not considered to 
have complete knowledge of a situation until it has 
filled in every item on the questionnaire. Only then 
may it take the appropriate action. A refinement 
to this method is to have a large selection of 
different frames available to the robot. One of the 
tasks of the robot is then to select the appropriate 
frame for a given situation. 

An important aspect of knowledge 
representation that we have touched on briefly is 
the part played by the programming languages 
themselves. Lisp, for example, being a list 
processing language, is particulary appropriate for 
this kind of approach to the storage and retrieval of 
data. The choice of language will, therefore, make 
it easier to represent knowledge in particular ways. 

In this instalment we have looked at a number 
of methods by which robots can be programmed 
with a fuller understanding of their environment. 
This is still the subject of considerable research in 
the computer science departments of universities 
throughout the world and the key elements are the 
use of sensors, feedback, learning and knowledge 
representation. In the next instalment of this series 
we will take a look at a different approach — 
computer simulation — in which computers are 
simply programmed to imitate real-life activities. 
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Parallel Lines 
processing system through 
sensors must be processed 
sufficiently quickly to allow an 
acceptably speedy reaction to 
the incoming data. 

The length of the incoming 
data queue is determined by 
the complexity of the 
algorithm interpreting the data 
and the processing speed. The 
volume of data generated by a 
sophisticated robot may be 
such that an eight-bit 
processor such as the Z80 or 
6502 cannot cope, causing 
lengthy data queues to build 
up. The solution to this 
problem lies in the use of 16- 
or 32- bit processors that can 
process twice or four times as 
much data simultaneously 
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The Lotus Screen 
The main menu in Lotus is © 

_ brought to the screen by 
pressing the / key, as in VisiCalc 

Macro Economics ’ 
Here is our range-naming macro 
as it appears in the worksheet. 
Macro instructions can carry ~ 

~ down acolumn, if necessary 

modelling by looking at the use of keyboard 
macros in 1-2-3, a worksheet’ with 
integrated database and graphics functions 
from the Lotus Development Corporation. 

The spreadsheet programs we have examined so 
far have been designed for home micros like the 
BBC, the Spectrum, the Commodore 64 and the 
Sinclair QL.These programs are necessarily 
hampered by the limited amount of RAM 
available for the program itself and the models 
developed. Similar programs written for the IBM 
PC, the ACT Apricot, and other business 
machines can take advantage of large resident 
memories and greater processing speed. As a 
result, some of the most innovative modelling 
programs can be run only on expensive machines 
of this kind. An example is Lotus 1-2-3, an 
integrated spreadsheet, database, and graphics 
program, which we looked at briefly on page 644. 

1-2-3 imposes considerable demands for 
memory on a computer by the nature of its design. 
Besides requiring enough RAM to handle the 
code for its three main applications, it also needs 
space for a worksheet with a theoretical maximum 
capacity of 256 columns by 1,028 rows. Memory 
is allocated to the worksheet only as needed but, 
even so, early versions of Lotus 1-2-3 require a 
minimum of 128 Kbytes simply to run, and later 
versions demand at least 256 Kbytes. The costs of 
a program like 1-2-3 and a system to run it are 
extremely high, but the result for the user is a 
program with a wide range of features. In this 
article we will show you how to use one of 1-2-3’s 
most interesting facilities, the keyboard macro. 
But to understand macros, we must first examine 
the way 1-2-3 works. 

POWER-UP 
When powered up, 1-2-3 displays ile Lotus 
Access System, a set of commands for data 
management. Placing the cursor on the first 
choice, 1-2-3, and pressing Return loads the 
worksheet into memory and prepares the screen 
display. 1-2-3’s rows are labelled with letters and 
the columns are numbered. As with Multiplan, 
which we loooked at in our last instalment (see 
page 764), 1-2-3 is menu-driven. The main menu 
is displayed when you press the / key. From that 
point on, menu options are selected either by 
typing the first letter of the appropriate command 
or by placing the cursor on the command and 
pressing Return. 

1-2-3 hasso many command options that there 
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BIG MACRO 
are several layers of sub-menus. While this means 
the user can use Lotus to perform literally 
hundreds of tasks, it also means that some 
operations require a large number of keystrokes 
(see diagram). To illustrate this point, let’s look at 
an example. 1-2- 3 allow you to name a cell or a 
region of cells with an identifying label. When, you 
want to act on the named region — including it ina 
formula, for example — the name is used in place 
of the cell reference, as follows: 

A3-B3=C3 SALES — COST = PROFIT 

cell references - name references 

Naming regions simplifies and accelerates finding 
things on a large worksheet. To name a group of 
four cells in 1-2-3 requires the following 
keystrokes: 

/ — displays the main menu; 
R(ange) — tells 1-2-3 that you are going to perform an 
operation on a small group of cells, rather than the 
entire worksheet; 
N (ame) — the identified range of cells is to be given a 

name; 
C(reate) — prepares 1-2-3 to accept a name eand attach 
it; 
Type the NAME to be attached: “START”, for example; 
Return to accept the active cell as the beginning of the 
range; 
Cursor right four spaces; 
Return to accept the active cell as the end of the range. 

Thus this process requires 10 keystrokes, plus the 
name itself. 

To reduce this to a more manageable number, 
1-2-3 permits the use of keyboard macros. Macros 
are like simple programs, written in 1-2-3’s 
operating language. They are created by storing 
the required keystrokes in a small portion of the 
worksheet, naming the location, then assigning the 
name to a specific key on the keyboard. From then 
on, the keystrokes will be carried out 
automatically by 1-2-3 whenever the assigned key 
is pressed in conjunction with a special function 
key, labelled ALT on the IBM PC and compatible 
machines. 

To automate the cell-naming process, we begin 
by allocating a section of cells on the worksheet to 
the macro. These cells must be chosen carefully for 
two reasons. First, they must occupy a safe space 
on the worksheet, an area in which data will never 
be placed. Secondly, as mentioned earlier, 1-2-3 
allocates space in memory only for cells that are 
activated. A cell is activated whenever it is pointed 
to by the cursor, so empty spaces between data 
cells will be given a space in memory. Thus, if a 
macro is placed far to the right of the rest of the 
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worksheet, several Kbytes of usable memory may 
be devoured by empty cells. For this reason, it is 
often preferable to place macros at the left-hand 
edge of the worksheet, in columns A, B, and C, for 
example. Ifall of the formulae in the worksheet are 
written to work from left to right, the macro 
regions will remain untouched. 
We will build our naming macro in column A. If 

the number of keystrokes becomes too large to fit 
neatly into a single cell, the macro can be 
contained on subsequent rows in the same 
column. Pointing the cursor at cell A1, we type the 
keystrokes needed: 

“IRNG 

At this point, 1-2-3 waits to accept the chosen 
name from the keyboard. A pause is inserted by 
typing a question mark enclosed in brackets, (?). 
1-2-3 will wait until the user presses Return to 
proceed with the macro. The bracket format is 
used consistently whenever an action is desired 
that cannot be indicated by a specific key. Included 
are cursor movements, which are shown by typing 
a direction word in brackets. Carriage returns are 
indicated by a tilde, . Thus the macro continues: 

‘/R NC (?) (right) (right) (right) (right) ” 

We have now entered all the keystrokes we need to 
name a region. This is the body of our macro. 

The next step is to name the region with the label 

of a key, such as N, for nam e. Unfortunately, 
we are faced with a vicious circle here. We must 
type out all the keystrokes we have just entered in. 
our range-naming macro because we haven't yet 
named and stored our macro! We place the cursor 
in cell Al and type: 

‘/RNC \ N Return Return — 

The character \ is used to indicate that the ALT 
key must be pressed — so \ N, the name of our 
macro, means ALT N to 1-2-3. Now that the region 
has been named, pressing ALT and N together will 
automatically activate the sequence of keystrokes 
stored. From this point on, naming a region can be 
accomplished by typing: 

ALT—N NAME Return 

— a large improvement on the original process. 
This example, while useful, is a minimal sample 

of the potential of keyboard macros. There is 
essentially no limit to the number of keystrokes or 
the number or type of operations that can be 
automated with macros. 

The principle of keyboard macros makes it 
possible for the user to customise applications 
software almost as one would write a BASIC or 
PASCAL program. Although Lotus’s 1-2-3 program — 
is expensive and is limited at present to business 
systems, the concept of macros will almost 
certainly filter down to software on home micros. 
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COURTESY OF LOTUS DEVELOPMENT CORP. 

Lotus Command Cluster 
Lotus has several levels of 
menus, as shown here. These 

commands are built in. Others 

can be user-defined via 

keyboard macros 



We have already shown you how the basic 
procedures of an adventure game are 
defined using LOGO (see page 775). Here, we 
discuss the procedures for moving between 
rooms and dealing with ‘perils’, before 
starting to build up the fantasy world of our 
own game. : 

Now that we have set up the basic structure of the 
game, we must consider procedures for moving 
between rooms. We will allow four directions of 
movement — north, south, east and west. 

TON 
MOVE “N :EXIT.LIST 

END . 

TOS 
MOVE “S :EXIT.LIST 

END 

TERE 
MOVE “E :EXIT.LIST 

END 

TO W 
MOVE “W :EXIT.LIST 

END 
A procedure called MOVE first checks that you can 
move in that direction, and then leaves the actual 
movement to another procedure — MOVE1. 

TO MOVE :DIR :LIST 
IF EMPTY? :LIST THEN PRINT [YOU CAN’T GO 
THAT WAY] STOP 
MAKE “EXIT FIRST :LIST 

IF :DIR = FIRST :EXIT THEN MOVE1 LAST :EXIT 
STOP | 
MOVE :DIR BUTFIRST :LIST 

END 

TO MOVE? :NO 
MAKE :ROOM.NAME HERE. DETAILS 
MAKE “HERE :NO 
ASSIGN. VARIABLES 

LOOK 
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MOVE1 takes a room number as input. First, it 
reassembles a list from its various components and 
reassigns it to the room name (there may have 
been changes while the adventurer was in the 
room). Then it alters HERE to the new room 
number and reassigns the various lists. This is the 
procedure it uses: 

TO HERE.DETAILS | 
OUTPUT ( LIST :DESCRIPTION :CONTENTS 
:EXIT.LIST ) 

END | 

This uses the primitive LIST, which makes a list of 
its inputs. The difference between LIST and 
SENTENCE is best explained by an example: 

LIST [A] [B] [C] outputs [[A] [B] [C]] 
SENTENCE [A][B][C] outputs [A B C] 

Since we wish to keep the individual components 
as sublists, we need to use LIST here rather than 
SENTENCE. 

PERILS OF THE GAME 
Generally, within an adventure game there are 
certain ‘perils’ to be avoided, such as poisonous 
snakes or quicksand. When the player encounters 
a peril we need to trigger off a certain sequence of 
actions, and prevent any movement out of the 
room until the peril has been overcome. The way 
we have done this is to add another list to our room 
list, which contains the names of any special peril 
procedures to be run on entering that room. So, we 
might define ROOM.2 as [[[YOU ARE IN A DARK DAMP 
CAVE][THERE IS A LIGHT IN FRONT OF YOU]] [BOX] 
[[N 5][E 6]][SNAKE]] where SNAKE is a ‘peril’. As a 
consequence of adding this to our list, we must 
modify the LOOK procedure given in the previous 
instalment: 

as d; 

hs 
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TO LOOK 
~ PRINTL :DESCRIPTION - 

PRINT ° 

PRINT [YOU CAN SEE:] — 
IF EMPTY? :CONTENTS THEN PRINT NOTHING 
SPECIAL] ELSE:PRINT :CONTENTS 
PRINT * | 

PRINT [YOU CAN GO:] PRINT. EXITS. -EXIT. LIST 
PRINT ° 

IF PERIL? THEN RUN :PERILS 

~ END 

RUN is a very powerful Loco primitive. It takes a 
list as input and runs the procedures in that list. 
Here, [SNAKE] might be assigned to PERILS, so RUN 
PERILS would run SNAKE. 

TO PERIL? 
IF EMPTY? :PERILS THEN OUTPUT “FALSE 
OUTPUT “TRUE 

END 

A number of other procedures now need to be 
modified to take account of these perils: 

TO ASSIGN.VARIABLES 
MAKE “ROOM.NAME WORD “ROOM. :HERE 
MAKE “ROGM THING :ROOM.NAME 7 
MAKE “DESCRIPTION DESCRIPTION :ROOM 
MAKE “CONTENTS CONTENTS :ROOM 
MAKE “EXI¥-LIST EXIT.LIST :ROOM 
MAKE “PERILS PERILS ; “ROOM 

END 

0 PERILS - ‘ROOM 
OUTPUT ITEM 4 :ROOM 

END 

TOHERE.DETAILS | 
OUTPUT (LIST DESCRIPTION :CONTENTS 
‘EXIT.LIST :PERILS) 

END 

TO MOVE :DIR :LIST 
IF PERIL? THEN PRINT [YOU CAN'T GO THAT 
WAY] STOP 
IF EMPTY? :LIST THEN PRINT [YOU CAN’T GO 
THAT WAY] STOP 3 

~ MAKE “EXIT FIRST :LIST 
IF :DIR = FIRST :EXIT THEN MOVE1 LAST :EXIT 
STOP 
‘MOVE :DIR BUTFIRST : LIST 

END checks if they are valid and then executes them. 

MOVE now prevents any movement until PERILS is 
set to [ ]. By setting up perils in this way we can use 
the same peril in a number of rooms, and move it 
from room to room by simply altering the room — 
descriptions. 

_ We can now use the procedures that we e have 
developed here to build up a complete adventure 
game called The Shrine of Zoltoth. In this game, 
the adventurer is in search of the sceptre of 
Gilgesh, which has been stolen by the high priests 
of Zoltoth and taken to their temple underground. 
The adventurer begins the game standing at the 
entrance to the underground cave leading to the 
shrine of Zoltoth. When designing your own 
game, you could begin by writing out a scenario 
for a successful journey through the game, and 
structuring the game around that. We do not give 
the scenario for our game here, so that you can still 
attempt to play it if you choose. 

The next stage is to plan out the game in terms 
of ‘rooms’ — that is, locations within the game, 
their contents and positions relative to one 
another. This drawing of the fantasy world is then © 

_ used to define the locations in the program, giving 
the exits allowed from each location. Adventurers 
will, in turn, have to build up-a map as they go 
along. 
We now need to decide on the vocabulary tobe 

used by the game — what words from the 
adventurer will the program be able to 
understand? We will allow: 

1. Seven single word commands: START, LOOK, N, 
S, E, W, and INVENTORY (these were all described 1 in 
the last instalment). 
2. Double word commands consist of a verb 
followed by a noun. 
The verbs are: GET, DROP, EXAMINE, KILL, RUB and 
OPEN. 
The nouns are: SWORD, CHEST, SCEPTRE, RING and 
SNAKE. | 

All of the commands are typed directly to Loco. If. 
they are recognised, they will be obeyed, but if they 
are not ee acne then the user will get a Loco 
error message. . 

However, it would be better to give error 
messages such as “I don’t know that word”, rather 
than the standard Loco error messages. To do this, 
we need an outer loop that picks up the inputs, 
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Here is one way of doing this for the vocgbalany 
defined so far: 

TO START | 
MAKE “HERE 1 
MAKE “INVENTORY {] 
SET.ROOMS 
ASSIGN. VARIABLES 
LOOK 

GAME 
END 

TO GAME 
~PRINT1 “COMMAND: 
MAKE “INPUT REQUEST 
IF VALID? :INPUT RUN :INPUT ELSE PRINT ll 
DON’T UNDERSTAND] ae 
GAME 

END 

TO VALID? :COM : 
F (( COUNT :COM ) = 
te 
IF (( COUNT :COM ) = 
‘COM 
OUTPUT “FALSE 

END 

TO VAL1? :COM 
IF MEMBER? FIRST :COM [INV W E S N LOOK 
START] OUTPUT “TRUE 
OUTPUT “FALSE 

END 

TO VAL2? :COM 
IF ALLOF VALV? FIRST :COM VALN? LAST COM 
OUTPUT “TRUE 
OUTPUT “FALSE 

END 

TO VALN? :NOUN 
IF MEMBER? :NOUN [SWORD CHEST SCEPTRE 
RING SNAKE] OUTPUT “TRUE 
OUTPUT “FALSE 

END 

TO VALV? :VERB 
IF MEMBER? :VERB [GET DROP EXAMINE KILL 
RUB OPEN] OUTPUT “TRUE 
OUTPUT “FALSE 

END 

1) THEN OUTPUT VAL1? 

2) THEN OUTPUT VAL2? 

THE PROGRAM 
You must first enter all the procedures given in the 
last instalment (see page 775). To begin the game, 
or to restart it at any time, type START. 

TO START 
MAKE “HERE 1 
MAKE “INVENTORY [] 
SET. ROOMS 
ASSIGN. VARIABLES 
LOOK 

END 

SET.ROOMS sets up the rooms according to the 
map. 

TO SET. ROOMS 
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MAKE “ROOMA [[[YOU ARE STANDING AT THE 
ENTRANCE] [TOACAVE}] (J ([E2]] 0] 
MAKE “ROOM.2 [[[YOU ARE IN A DARK, DAMP 

CAVE]] [] ([S 3] [E 4] [W 1] U]] 
MAKE “ROOM.3 [[[YOU ARE IN A DARK, DAMP 

CAVE]] [] ([N 2] [E 9]] [1] : 
MAKE “ROOM.4 [[[YOU ARE IN A GREAT 
UNDERGROUND CHAMBER]] [] [[N 6] [S 5] [W 
2]] [SNAKE.ATTACKS]] 
MAKE “ROOM.5 [[[YOU ARE INA DARK, DAMP 

CAVE]] [SWORD] [[N 4] [W 3] []] 
MAKE “ROOM. 6 [[[YOU ARE IN A SACRED 
SHRINE ROOM] [IN AN ALCOVE IN THE NORTH - 
WALL] [IS AN ALTAR]] (J [[N 7] [S 4] [E 8}] 
-[GATE]] 
MAKE “ROOM.7 [[[YOU ARE STANDING BY] 
[THE ALTAR OF ZOLTOTH THE GILDED] [ABOVE 
THE ALTAR IS WRITTEN:] [“LET NO BASE 
METAL APPROACH”}] [RING] [[S 6]] []] 
MAKE “ROOM.8 [[[YOU ARE IN A DARK, DAMP 
CAVE]] [] [[S 10] [E 9] [W 6]] [SNAKE.ATTACKS]] 
MAKE “ROOM.9 [[[YOU ARE IN A DARK, DAMP 
CAVE]] [CHEST] [[S 11] [W 8]] []] 
MAKE “ROOM.10 [[[YOU ARE IN A DARK, DAMP. 

CAVE}) [] [[N 8] [E 11]] (11 
MAKE “ROOMA11 [[[YOU ARE IN THE VESTRY 
OF] [THE PRIEST OF ZOLTOTH THE GILDED]] 
[SCEPTRE] [[N 9] [W 10]] ul 

END 
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OVER SIXTEEN 

The Commodore 16 is the cheaper of the 
two ‘new generation’ home and small 
business computers introduced by the 
company in 1984. The other is the Plus/4, 
which comes with a larger memory and 
rudimentary integrated software in ROM 
(see page 709). 

Possibly intended to aapenede the Vic-20, walls its 
minuscule 3,583-byte memory, the 16 shares with 

the Plus/4 a very powerful Basic, which 
supplements the BAsic disk-handling commands 
of machines like the CBM 8296 with a batch of | 
toolkit, graphics and simple sound commands, 
while making a token gesture towards structured 
programming with DO ... WHILE and LOOP ... 
UNTIL. . . EXIT constructs. 

Unlike the Plus/4, which has a keyboard and 
case that are radically different from anything seen 
previously from Commodore, the 16 is supplied in 
a similar casing to the earlier Vic and 64 models, 
although the colour scheme is different — 
charcoal, with light-grey keys — and the key layout 
has been changed. The keys are large and well 
placed and have a firm professional feel to them, 
like those of the 16’s predecessors. An interesting 
innovation is the provision of a HELP Key (actually 
function key F8), which aids the user after a 
program has stopped with a syntax error report by 
displaying the line containing the error and 
flashing the part that is incorrect. In multiple- 
statement lines, the characters flash from the error — 
to the end of the line — it would be more helpful if 
the flashing were restricted to the actual error (e.g. 
PRONT for PRINT). 

POINTS AGAINST 
The most controversial aspect of both the 16 and 
Plus/4 is the fact that for the first time 
Commodore has produced hardware that is not 
‘upward compatible’ with what has gone before — 
no Vic or Commodore 64 software will run on 
either new machine. The joystick and cassette 
sockets are also different, with the former 
departing from the nine-pin D-connector type 
that is generally regarded as a standard fitting. 
Disk interface and monitor sockets, however, are 
identical to those found on the 64. 

The most serious change for the worse, as far as 
the games programmer is concerned, is that there 
is no provision for sprites. Though the Vic-20 had 
none, their use in the Commodore 64 (and 
competitive machines) has so accustomed users to 
sprites for the simple manipulation of graphics 
shapes that this seems a strange omission. 

On power-up, the screen shows the familiar 
Commodore display, with the difference that the 
BASIC indicated is version 3.5, and there are 12,277 
bytes of memory available. Basic 3.5 is actually 
the fifth version to be written for Commodore 

machines. The original version, 1.0, contained no 
disk-handling commands, and these were very 
cumbersome in version 2, which was for some 

~ reason the dialect incorporated in the Vic-20 and 
Commodore 64. By March 1980, version 2 had 
been superseded by version 4, which is a very 
efficient BASIC written for the 80-column Pets, the 
8032, 8096, and now the 8296. 

Version 3.5 is almost identical to BASIC 4, witha 
number of extra commands. In all, the new 
version has over 50 more commands and 
functions than were offered by the Vic, including 
toolkit commands used in writing and debugging 
programs, structured programming features, 
graphics and sound commands. 

The direct command MONITOR invokes 
Tedmon, the resident monitor (which can also be 
accessed by SYS 4 as on the Pet series). This uses 
single-letter mnemonic commands: for example C, 
which will compare two sections of memory and 
report the differences; and S, which will save to 
tape or disk. 

The ‘kernal’ routines are mainly unchanged. 
These are routines called from machine code that 
govern the handling of the input and output 
routines. However, the 64’s IOINIT function to 
initialise input/output devices (and especially 
program cota has been added at ek 

CHRIS STEVENS 

Commodore 16 
Intended to réplace the Vic-20 in 
the Commodore line-up, the 
new machine has 16K of © 
memory and an improved 
BASIC. The Commodore 16 is 
software-and plug-compatible 
with the Plus 4, but not with the 
older Commodore machines, 
the Vic-20 and Commodore 64 
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HARDWARE/COMMODORE [6 

GRAPHICS 
The bit mapped high resolution screen is 320 by 
160 pixels in size, and the multi-colour screen 
gives a resolution of 160 by 160. The GRAPHIC 
mode command is obviously easier to invoke than 
the 64’s POKEs and PEEKs, as is the split screen, 
although with this text is limited to the bottom five 
lines. However, text may be placed anywhere on a 
graphics screen by using the CHAR statement, so 

CHAR 1,0,0, “THIS IS THE TOP LINE” 

will print along the top of the screen, 1 being the 
colour selected, and the two zeros referring to 
column and row positions. The string can be 
printed in inverse video if it is flagged with a *,1’; 
this is turned off with ‘,0’. Any syntax error in any 
of the graphics modes will return the user to 
GRAPHIC 0, the ‘pure text’ screen. _ 

The DRAW. command is something of a 
compromise between the fairly limited straight 
lines available on the Amstrad and the Loco-like 
MSX DRAW. For example, a square can be drawn 
with: 

DRAW:10,10 TO 10,60 TO 60,60 TO 60,10 TO 10,10 

In this case the first parameter is not defined, so the 
colour of the square will be the last colour set. This 
colour can be changed by inserting the relevant 
value. There is also a BOX command, which is used 
specifically to draw rectangles by specifying the 
positions of the four corners, with a ‘fill’ parameter 
to paint the box with colour. 

The CIRCLE command will draw ellipses, 
octagons and even diamonds and triangles as well 
as ‘proper’ circles, depending on the parameters 
specific’: The non-circular shapes are chosen by 
specifying 120° angles between segments for a 
triangle, 90° for a diamond, and 45° for an 
octagon. The default setting is 2°. PAINT will fill the 
shape so created, either with the same colour as the 
shape outlined or with a definable foreground 
colour, and shapes can be SAVEd or recalled to or 
from disk by use of the SSHAPE and GSHAPE 
commands. 

Colours are specified from Basic by allocating 
one of 16 values to background, foreground, 
multicolour 1, multicolour 2, or border, with an 
optional luminance parameter of 0 to 7. The 
default luminance is 7, the brightest. In all drawing 
commands, the colour parameter has to be chosen 
from one of the five areas already defined. 

SOUND , 
After the sophistication of the sound commands 
possible with the 64’s SID (Sound Interface 
Device) chip, the Commodore 16’s two-channel 
sound is something of a disappointment, 
especially since the current generation of 
competitive machines utilising the General 
Instruments’s sound chip — Amstrad, MSX, 
Einstein — offers three channels plus noise. | 

However, the SOUND command doesn’t require 
figures to be POKEd into locations 54272 to 54296, 
as with the 64. If you know the frequency of a note, 
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you can look it up in a table in the manual and use 
the supplied figure to define the note to be played. 
For example: 

SOUND 1,770,60 

will sound note A (at a frequency of 440 Hz) for 
60 sixtieths of a second, (i.e., one second) on 
channel 1. 

_ The lowest sound that can be played is A two 
octaves below middle C (110 Hz), and the highest 
is G two octaves above middle C (1,575 Hz), 
giving a total musical span of four octaves. ‘Two 
music channels are available (1 and 2), or one 
music channel (1 or 2) and one white noise 

channel (3). Both channels are combined, since 
the audio out signal is in mono, and there i is no way 
of separating the two. 

The Commodore 16 is an attractive machine, 
with a very advanced Basic and good graphics 
commands, but its sound facilities are fairly 
primitive, even in comparison with the Vic-20, 
although they are easier to execute on the new 
machine. 

Very little software is available for it at launch- 
time, which could hold back its success in the 
marketplace until the situation is rectified. Buyers 
upgrading from the older machine may also be put 
off to find that it won’t RUN their old programs. 
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Formation Display 
_ The screen formatting routine 

used by Haunted Forest and 
Digitaya allows any screen 
output to be formatted so that 
word breaks do not occur. By 
using variables OWS and NWS 
‘the routine ‘looks’ one word 
ahead of the word about to be 
printed. If the next word were to 

exceed the designated line 
length, the semi-colon 
supressing a carriage return is 
ommited, causing a new line to 
be started 
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STORY LINE 

The adventure games that we are designing 
in this programming project are text-based 
— when the player enters a new location, the 
description and the possible exits must be 
printed to the screen. Here, we develop a 
utility that will allow us to format output to 
the screen. 

As Digitaya and Haunted Forest are both text- 
based adventures, they use words to describe 
locations and events. Passing this information to 
the screen using PRINT statements can be 
inelegant. For example, a PRINT statement that 
exceeds the length of one screen line will carry 
onto the next line, often splitting in two words that 
fall across the end of the screen line. A laborious 
way to get around this problem would be to 
consider each PRINT statement in the program 
individually and ‘manually’ format the output so 
that words on the ends of lines were not split. If 
there were just a few occasions on which this had to 
be done then it would not be too much of a chore, 
but in an adventure game program this would have 
to be done a lot. The alternative is to design a 
routine that formats output for us. To use such a 
routine we should be able to pass the sentence we 
want to format to the routine via a string variable, 
and the routine should take care of the formatting 
and output. | 

Digitaya and Haunted Forest both use a special 
routine to format their output, so before we 
continue to describe the game programming itself, 
let’s look at how this routine works. Here is the 
listing from the Haunted Forest game. 

5500 REM *x**x FORMAT OUTPUT S/R **xx 
551@ LC=a@: REM CHAR/LINE COUNTER 
5520 oc=1: REM OLD COUNT INITIAL VALUE 
5530 OWSs="": REM OLD WORD INITIAL VALUE 
554@ LL=4@: REM LINE LENGTH 
5550 SNS=SNS+" DUMMY " 
5560 PRINT 
5570 FOR C=1 TO LENCSN®)> 
558@ LC=LC+1 | 
5599 IF MID$(SN$,C,1)=" " THEN GOSUBS800 
5600 NEXT C 
5695 PRINT 
5610 RETURN 
5620 : 
5800 REM ** END OF LINE CHECK S/R ** 
5810 NW$=MIDS<(SN*S,OC ,C-OC+1)>2REM NEW WORD 
5820 IF LC<LL THENPRINTOWS: :GOTO5840 
583@ PRINTOWS: LC=LEN(NWS) 
5840 OC=C+1: OWS=NWS 
5850 RETURN 

The routine first of all searches through the 
sentence, passed to it by the variable SNS, for a 
space character. Whenever a space is found, the 
subroutine at line 6020 is called. This subroutine 
carries out several important tasks. Using OC to 
indicate the beginning of a word (initially, OC is set 
to 1), and C to keep track of the current character 
under examination, the word encountered before 
the space can be isolated using MIDS and stored in 
NWS (for ‘New Word’). Before the contents of 
NWS are output to the screen, they will be 
transferred to OWS. | 
A line counter, LC, is used to count how many 

characters have been used so far on any given line, 
and this is checked at line 6040 to ensure that it is 
less than the permitted line length, LL. If this is the 
case, then OWS is PRINTed, followed by a semi- 
colon to ensure that any output that follows will 
continue on the same line. If LC does exceed LL 
then, again, OWS is PRINTed, but this time omitting 
the semi-colon (and thus, any output that follows 
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will start on a new line). In addition, the line 
counter, LC, is reset to the length of the new word. 
Now let’s see how this subroutine works in 

practice. The routine scans through the sentence 
to be formatted, searching for a space. When a 
space is found, the characters between it and the 
last space found are designated as forming a new 
word. The routine is, effectively, looking ahead 
one word from that which is being PRINTed. The 
routine checks if the maximum wordlength has 
been exceeded when the new word is added to the 
screen line. If so, the routine causes a new line to be 
started. Thus, word splits over the end of the lines 
are avoided. The addition of “ DUMMY ” to the end 
of the sentence is important, as this provides a last 
word to be stored in NWS. The spaces around 
“ DUMMY ’ are significant: the former marking it 
as a separate word and the latter providing a final 
space to be detected by the routine. 

Let’s take as our example, the sentence ‘Mary - 
had a little lamb its fleece was white as snow.’ The 
screen width we will use is 40 characters wide. If 
the sentence were unformatted, the word ‘white’ 
would be split in two, with the letters ‘ite’ starting a 
new line. The formatting routine, however, takes 
the sentence two words at a time. If we consider 
the two words preceeding ‘white’, then ‘fleece’ 
would be stored in OWS and ‘was’ in NWS. Having 
checked that the counter, LC, does not exceed 40, 
OWS is PRINTed, followed by a semi-colon; ‘was’ is 
then transferred from NWS to OWS and the routine 
continues to scan the sentence, and finds the word 
‘white’. At this stage, the counter LC exceeds 40, 
indicating that ‘white’, falls over a line break. In this 
situation, OWS (now containing the word ‘was’) is 
still PRINTed but without a semi-colon. In addition, 
the counter LC is reset to the number of characters. 
in this word. The word ‘white’ is transferred to 
OWS, for subsequent PRINTing on a new line. 

TESTING THE ROUTINE 
In order to test the routine, we will use it 
format and: display the initial description of the 
story. We can assemble a sentence of up to 248 
characters, using the variable SNS, and call the 
formatting subroutine. Type in the following lines: 

108969 REM **xx*x STORY SO FAR S/R *k%* 

1919 SN¢="WELCOME TO THE HAUNTED FOREST" 

1020 GOSUBSS500:REM FORMAT 

1038 PRINT 

1940 SN¢="AS YOU AWAKE FROM A DEEP SLEEP, THE " 

1958 SN#=SNS$+"FOREST FLOOR FEELS SOFT AND DRY. " 

196@ SN¢="YOU DO NOT KNOW HOW YOU CAME TO BE HERE " 

10878 SNS=SN#+"BUT KNOW THAT YOU MUST FIND THE " 

1988 SN*=SN$+"VILLAGE ON THE EDGE OF THE WOOD TO " 

1098 SN*#=SN%$+"REACH SAFETY." 

1196 GOSUBS590:REM FORMAT 

111@ PRINT 

112@ SN$="YOU LOOK AROUND, TRYING TO GET YOUR BEAR 

INGS.” 

113@ GOSUBS50@:REM FORMAT 

114@ PRINT:PRINT"PRESS ANY KEY TO START" 

1150 GET AS: IF AS="" THEN 1150 

116@ PRINTCHR#$(147>:2REM CLEAR SCREEN 

1178 RETURN 

We then need to call the ‘Story So Far’ subroutine 
using these lines: 

205 GOSUB 1000: REM STORY SO FAR 
990 END 
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‘Signature Tone 
Handwritten messages 

or signatures can be 
reproduced on a remote 
pad connected by telephone 
to this facsimile transmission 
pad. The transmission itself is 
scrambled and silent, so should 
be doubly safe from interception 
or eavesdropping 

IDENTIFICATION 
This is a method whereby the computer 
determines the identity of a user. [dentification is 
necessary in multi-user and network systems, as 
well as micros, to prevent unauthorised users 
gaining access to confidential files and documents. 
The process generally consists of a password or 
coded value being entered to enable the user to 
‘log on’ to the computer. This is then followed by a 
personal password, which allows users access to 
their own personal files. 

However, because this system has proved to be 
vulnerable to ‘hacking’ — unauthorised entry — 
both users and manufacturers have been searching 
for a more foolproof method of identification. 
One such method, being developed by Dr Kuno 
Zimmerman of the University of Missouri- 
Columbia in the US, requires the user to inscribe a 
signature on an electronic pad. Significant points 
of the signature will then be compared with the 
version stored in the computer’s memory. As each 
signature is unique, this will make it much more 
difficult for other Peane to gain access to the user’s 
files. 

IEEE 
The Institute of Electrical and ‘Blectronic 
Engineers was founded in 1963 in the United 
States, as a result of the merger of the Institute of 
Radio Engineers and the American Institute of 
Electrical Engineers. It now has over 200,000 
members throughout the world. 
Home computer users may be familiar with the 

IEEE 488 parallel communications bus, to which 
the Institute has given its name. The IEEE 
(usually referred to as ‘I triple E’) bus standard 
demands that there should be a line for each bit ina 
byte, enough lines to accommodate the maximum 
address, and control lines set aside for input and 
output. The IEEE standard also consists of a 
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handshake protocol, which enables data to be 
checked for accuracy as it crosses the bus. The 
IEEE bus can be used, therefore, to transmit data 
between different types of computer. 

IF-THEN-ELSE 
This conditional statement is to be found in the 
BASIC. dialects on most popular home micros, 
although the ELSE part of the statement is only 
implemented on some of the more advanced 
home machines. When the _ IF-THEN-ELSE 
statement is fully implemented on a micro it 
provides the computer with a choice of actions, 
dependent on whether the IF condition is either 

~ true or false. When the IF condition is true THEN the 

following action will be executed. Conversely, 
_ when the IF statement is false, the action following 
the THEN statement will not be executed. 

The full statement allows a program to be truly 
structured, as the ELSE command can be used to 
call another subroutine, which will check for other 
conditions. Unfortunately, many popular micros 
have only the IF-THEN part of the statement. This 
means that when the IF condition fails the rest of 
the line is not implemented and control is 
transferred to the following line. While this is not 
disastrous, as further conditions can be checked on 
following lines, this system is harder to debug and 

not as failsafe as having checking procedures in 
separate routines. 

IMPACT PRINTERS 
An impact printer prints alphanumericor graphics 
characters onto paper by means of mechanical 
impact. There are two main types of impact 

printer. In the first, an engraved piece of type is 
forced against an inked ribbon, thus forming an 
impression on the paper. An example of this type 
is the daisy wheel printer. 

The second type of impact printer consists of a 
number of pins in a matrix. The pins are forced out 
in various combinations, determined by electrical 
signals. The pins press against the inked medium, 
creating the character on the paper. An example 
of this type is the dot matrix printer. Although 
typewriters are, in the strict sense of the term, 
impact printers, they are generally not included as 
such. This is because impact printers are 
considered to be devices that are not exclusively 
controlled from a keyboard. 

IMPULSE NOISE 
Noise is considered a problem in computing as it 
can interfere with electronic signals and, therefore, 
corrupt the data being transmitted. Impulse noise 
occurs in irregular bursts, and, due to its large 
amplitude (volume), can badly disrupt the 
efficient operation of analogue devices. This is 
because the impulse noise will be picked up by the 
analogue device and then transmitted as data — 
thus generating a burst error (an error found in a 
single piece of data). Impulse noise is difficult to 
deal with due to the irregular nature of its arrival 
and the variations in the size of each pulse. 
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~ BREAK EVEN POINT 

program. First, we will complete the module 
of routines to handle breakpoints, which we 
started coding in the last instalment (see 
page 777). Then we look at the procedures 
necessary to handle each of the commands. 

We have yet to define two subroutines for the 
Breakpoint module — one to remove inserted 
breakpoints and the other to restore the original 
op-code where we have placed a temporary SWI- 
opcode. The first routine we need to consider is 
called § Uninsert-Breakpoint (from the 
Breakpoint-Table). 
Up to 16 breakpoints have been allowed for in 

the Breakpoint-Table (BPTAB). ‘Io remove one we 
must be supplied with its number as an offset (in 
the range 0 to 15) into this table. The table entry is 
removed by shifting all subsequent entries in the 
table back one place (two bytes) and 
decrementing the Number-Of-Breakpoints. 

UNINSERT-BREAKPOINT 
Data: 

Number-Of-Breakpoints is an eight-bit value 
Breakpoint-Number is an eight-bit counter 
Breakpoint-Table is a table of 16-bit addresses 
Entry-to-be-Removed is an eight-bit offset (with a 
value in the range 1 to 16) 

Process: Uninsert-Breakpoint 
Decrement Number-Of-Breakpoints 
lf Entry-to-be-Removed <= Number-Of- 
Breakpoints (one before last) THEN 

For Breakpoint-Number = Entry-to-be- 
Removed to Number-Of-Breakpoints (one 
before last) 
Move Breakpoint-Table(Breakpoint-Number + 
1) to Breakpoint-Table(Breakpoint-Number) 
Move Removed-Values(Breakpoint- Number + 1) 

to Removed- Values (Breakpoint-Number) 
EndFor 

Endit 
End of Process 
The parameter Entry-to-be-Removed can be 
passed in B. The counter Breakpoint-Number can 
then also be placed in B, and will get automatically 
set to its correct initial value. After comparing it 
with Number-Of-Breakpoints, it must be 
decremented to form the offset into the eight-bit 
Removed-Values table and _ then shifted 
(multiplied by two) to form an offset into the 
16-bit Breakpoint-Table. We can keep the eight- 
bit offset in B and the 16-bit offset in A. The 
addresses of the entries in the two tables can be in X 
and Y, so we can use auto-increment to step 

through the table. The 16-bit entry can be shifted 
through U, but the eight-bit entry will have to use A 
again. 

The last process used in this module physically 
removes a breakpoint by replacing the SWI- 
opcode with the original op-code from the table of 
Removed- Values. 

UNSET-BREAKPOINT 
Data 

Breakpoint-Number is the eight-bit offset 
into Breakpoint-Table 

Process: 
Get value in Removed-Values(Breakpoint- 
Number) 
Store it in address in Breakpoint- Table 
(Breakpoint-Number) 

We will assume that the parameter Breakpoint- 
Number is passed in B in the usual form as a 
number in the range from one to 16, which must be 
converted to function as an offset into the tables. 
We are now at the stage where we can start 

constructing a module to execute the eight single- 
letter commands that operate the system (see page 
758). A number of these commands can be 
directly executed by the routines that we have 
already written. However, for the sake of 
completeness and a proper modular structure we 
shall incorporate calls to them from this module. 

The command B, to insert a breakpoint, is 
covered completely by the routine Insert- 
Breakpoint (BP01). In this module, therefore, we 
simply need: 

CMDB BRA BPO1 

Command U, to Un-insert a breakpoint, is almost 
covered by the routine that we have just written 
(BP04). However, we must first get the address of 
the breakpoint to be removed and search the 
Breakpoint-Table to find that address. If it is not 
there, then we ignore the command; if it is there, 
then we can pass the offset to the subroutine at 
BPQ2. 

COMMAND U 
Data: 

Prompt is to be displayed 
Breakpoint-Address is the input 
Breakpoint-Table | 
Breakpoint-Number 

Process: | 
Display prompt 
Get Breakpoint-Address 
Set Breakpoint-Number to 16 
While Breakpoint-Table (Breakpoint-Number) 
<> Breakpoint-Address 
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Data: 

and Breakpoint-Number > 0 
Decrement Breakpoint-Number 

If found then 
Uninsert-Breakpoint 

: Breakpoint-Address can be kept in Y, leaving X 
available to use as a pointer into the table. 

| Breakpoint-Number can be kept in B. 
Command D, to display the breakpoints, is 

covered by the routine labelled DISPBP (Display- 
Breakpoints). This is simply accessed by a 
subroutine branch: 7 

CMDD BRA DISPBP 

Command S, to start running the program, is 
rather more complicated, since this is where 
breakpoints have to be inserted. The op-code for 
the SWI instruction must be inserted at each 
address in Breakpoint-Table, and the op-code that 
is already there is put into Removed-Values. 
When this has been done, control must be 
transferred to the start address of the program. We 
must also note that the next breakpoint is number 
1. The full process for the start of program is: 

COMMAND $S 

Number-O0f-Breakpoints is an eight-bit value 
Breakpoint-Table 
Removed-Values 
Breakpoint-Number is an eight-bit counter 
Next-Breakpoint is an eight-bit value 
SWI-Opcode is an eight-bit value 
Start-Address is a 16-bit starting address for the 
program that we are debugging 

Process: | 
Set Breakpoint-Number to Number-Of- 
Breakpoints | 
While Breakpoint-Number > 0 

Set-Up-Breakpoint (Breakpoint-Number) 
Decrement Breakpoint-Number 

Endwhile 
Set Next-Breakpoint to 1 
Jump to Start-Address 

For this, we use the routine Set-Up-Breakpoint — 
this is already coded — which requires the 
Breakpoint-Number (minus one, so that it can be 
used as an offset into the tables) in A. For 
convenience, we will decrement A before the call to 
Set-Up-Breakpoint. The full coded routine is 
given here. | 

The way that this routine ends needs a little 
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explanation. When the program to be tested is 
running we do not need extra items on the stack, so 
-we must make sure that the stack is empty when 
control is transferred to the program. We can clear 
any superfluous items off the stack in the main 
module, but if this routine is called by means of a 
BSR (to maintain consistency with other 
commands) the return address will have been 
placed on the stack. If we leave it there, then, in a 
long session (where the program may be restarted 
a number of times) the stack will keep growing. 
The solution we have used removes the address 
from the stack at the same time as control is 
transferred back to the program. It does this by 
replacing the return address on the stack by the 
start address. The RTS then pulls the return 
address, which is now the start address, off the 
stack, thus transferring vontrol while resetting the 
stack. | 

The final command we will look at in this 
- instalment is command M, to inspect and change 
memory locations. The idea here is to get an input 
address and to display the contents of that address 
on the screen. The user can then enter a new two- 
digit hex number to be placed in that location, or 
simply a Return. In either case, we move on to the 
next consecutive memory location. The user can 
stop the process by entering a dot. The routine 
GETHX2 was coded with this in mind, allowing the 
entry of two hex digits or a dot or a Return. 

COMMAND M 
Data: 

Current-Location is the 16-bit address of the 

location being inspected 
Current-Value is found in Current-Location. This 

is eight-bit 
New-Value for the Current-Location. This is also 
eight-bit 

Process: 
Get Current-Location 

Repeat 
Display Current-Value 
Get New-Value 
If New-Value is not a dot then 

If New-Value is not Return then 

Store New-Value in Current-Location 
Endif 

Increment Current-Location 
Display Current-Location 

Endif 
Until Current-Location is a dot 

For this command routine, Current-Location is 
stored in X, and the B register is used for both 
Current-Value and New-Value. A is used as a flag 
to indicate which of the three possibilities (hex 
number, dot or Return) was entered. 

We have now to design and code three 
remaining commands — G, R and Q. However, 
these involve the use of an interrupt mechanism, 
which we have yet to look at. This, and the 
designing of the main module for the deb gging 
program, are the subject of the next instalment. 



Uninsert Routine 
BP04 PSHS A,B,X,Y,U 

DEC NUMBP,PCR 

|FO2 _ CMPB NUMBP,PCR 
BGT ENDFO2 
DECB . 
TFR B.A 
LSLA 
LDX BPTAB,PCR 

LEAX A,X 

LDY REMTAB,PCR 

LEAY BY 

FOROO LDU 2,X 

STU X++ 

LDA 1y 

SIA Yt+ 

INCB 

CMPB 
BLT FOROO 

ENDFO2 PULS 

NUMBP,PCR 

A,B,X,Y,U,PC 

Save used registers 

Decrement Number-Of- 
Breakpoints 

lf Entry-to-be-Removed < 
Number-Of-Breakpoints 

Convert B to use as offset 

Copy Binto A 

Convert A to use as offset 

Base address of Breakpoint- 
Table 

Breakpoint-Table (Breakpoint- 
Number) 

Base address of Removed- 
Values 

Removed-Values (Breakpoint- 
Number) 

Get Breakpoint-Table entry to be 
moved 

Move it back one place 

Get Removed-Values entry to be 
moved 

Move it back one place 

Last one? 

Next one 

Restore and Return 

Unset-Breakpoint Routine 
BP05 PSHS 

: DECB 
A,B,X 

LDX REMTAB,PCR 

LDA B,X 
LSLB 

LDX BPTAB,PCR 

SiA.Sstéi@®*~AX| 
PULS AB XPC 

| Command U 
PROMPT FCB > 
CMDU PSHS = AB,XY 

LDA PROMPT,PCR 
BSR OUTCH 
BSR GETADD 
TFR DY 
LDB MAXBP,PCR 

LDX -BPTAB,PCR 
TFR B.A 
LSLA 

LEAX A,X 

TSTB 
WHILO2 BLE 

CMPY _ 
ENDW02 

Convert to offset into Removed- 

Values 

Base address of Removed- 

Values 

Get value to be moved 

Convert to offset into 

Breakpoint-Table 

Base address of Breakpoint- 
Table 

Store at address in table 

Restore and Return 

Save used registers 

Display prompt 

Get Address 

Put Breakpoint-Address in Y 

Maximum number of 
Breakpoints (16) 

Base Address of Breakpoint- 
Table — 

Ais offset to the end of 
Breakpoint-Table 

X now points past the end of the 
table 

Set flags on contents of B 

While B=>0 

(Remember X is decremented 

first) 

BEQ 

DECB 

BRA 

ENDWO02 TSTB 

IFO3 BLE 

~ BSR 

ENDFO3 PULS 

Command S$ 
START RMB 

CMDS LDA 

WHILO3 TSTA 

BLE 
DECA 
BSR 
BRA 

ENDW03 LDA 
STA 
SID 
RTS 

Command M 
PROMPT FCB 
SPACE FCB 
CMDM PSHS 

LDA 
BSR 
BSR 
TFR 

REPTO1 LDB 
BSR 
LDA 
BSR 
BSR 

FO3 TSTA 
BLT 
BGT 
STB 

ENDF03 LEAX 
TFR 
BSR 
BRA 

UNTLO1 PULS 

ENDW02 

WHILO2 

ENDF 
BP04 
A,B,X,Y 

2 
NUMBP,PCR 

ENDW03 

BP02 
WHILO3 
rl 
NEXTBP,PCR 
1,8 

2 
32 
A,B,X 
PROMPT,PCR 
OUTCH 
GETADD 
D,X 
X 
PUTHEX 
SPACE,PCR 
OUTCH 
GETVAL 

UNTLO1 
ENDF03 
X 

1,X 
X,D 
DSPADD 
REPT 
A,B,X,PC 

and Breakpoint-Address is not 
found in table 

Decrement Breakpoint-Number 

Found if B>0 

If found then 

Uninsert-Breakpoint 

Start-Address 

Set Breakpoint-Number to 
Number-Of-Breakpoints 

Test the value of Breakpoint- 
Number 

While Breakpoint-Number>0 
Decrement Breakpoint-Number 

Set-Up-Breakpoint 

Next Breakpoint 

Set Next-Breakpoint to 1 

ASCII code for Space 

Save used registers 

Display Prompt 

Get Current-Location 

Move it to X 

Get Current-Value 

Display Current-Value 

Display a Space 

Get New-Value 

lf New-Value is not a dot 

If itis not a Return 

Store New-Value in Current- 

Location 

Increment Current-Location 

Display Current-Location 
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IAN McKINNELL 

a eee ee ee 

SUM OF 
THE PARTS 
In this series of Workshop we have 
developed a buffered electronic system that 
can be used with the BBC Micro and the 
Commodore 64 to monitor and control 
external devices. In future instalments we 
shall build a small robot. Now we review 
the ground we have covered so far. 

The BBC and Commodore 64 micros have a 
similar input/output arrangement that allows 
communication with the outside world through a 
user port, consisting essentially of eight data pins 
and an earth connection. These eight data pins 
map directly into a particular location in memory, 
called the data register, each pin corresponding to 
a bit in the register. A second location, the data 
direction register (DDR), controls the direction of 
data flow from or to each pin. If any pin is set to 
output (DDR bit=1) then a voltage of +5v is 
‘induced at the pin whenever the corresponding bit 
is set high (to one). If the data bit is set low then a 
zero voltage is induced at the corresponding pin. 
Although the current supplied from the user port 
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data pins cannot directly drive external devices, it 
can be used to trigger a relay system that allows 
larger voltage and/or current ver to be 
switched on or off. 
When a pin is set for input (DDR bit=0) then 

the method of operation is rather different. In this 
case the corresponding bit in the data register 1s 
held high, only going low if the pin is connected to 
earth. This fact can be used to monitor events in 
the outside world by connecting one side of a 
simple switch to a data pin and the other side to 
the user port earth. When the switch is thrown, the 
data pin connects with earth and _ the 
corresponding bit in the data register undergoes a 
transition from high to low. This change in the data 
register can be easily detected by software that 
monitors the state of the data register and so the 
flow of program control can be altered externally. 

The eight data lines and the earth must be 
connected in some way to each device in the user 
port system and so the entire system is designed 
around a common nine-line bus, each device 
tapping into the appropriate lines for its particular 
needs. This common bus is fed to each device by a 
12-way ‘minicon’ connector. By wiring a male 
connector on the ‘in’ side and a female on the ‘out’ 
side of each device we can ‘daisy-chain’ any 
combination of system parts together. : 

In this instalment the operation of each module 
in the system is summarised and a circuit diagram 
given. For full constructional details and parts lists 
refer to the original articles. 

CIRCUIT DIAGRAMS BY LIZ DIXON 
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Here, courtesy of Zilog Inc., we reproduce a further part of the Z80 programmers’ reference card. 

Input and Output Groups 

Reverie @sseie) 

PORT ADDRESS 

IMMED.| INDIR. 

OV cote Cree 

SOURCE 

REGISTER IND. 

INPUT ‘IN’ ADDRESSING 
‘QUT!’-OUTPUT Inc HL, 
Dec b 

‘OTIR’-OUTPUT, Inc HL, REG. 
INPUT Dec B, REPEAT iF B+0 IND. 

DESTINATION BLOCK 

‘QUTD'-OUTPUT Dec Hi | REG. oe OUTPUT 
Dec B IND __ AB _ | commanos 

Co oor ee | ee | = 
Dec B 

een en” 

‘INIR’-INP, Inc HL, ee 

4ND’-INPUT & INDIRECT COMMANDS ADDRESS 

Dec HL, Dec B 

‘INDR’-INPUT, Dec HL | 
Dec B, REPEAT IF B+0 

Symbolic Flags 16) oxerore[:) No.of No.of M No.of T 
Mnemonic Operation S) H PIV N C 76 543 210 Hex Bytes Cycles States Comments 

IN A, (n) A — {n) ° Be UU UC 11 011 O11 DB & 3 1] nto Ag — A7 
-— : | Acc to Ag ~ Aji5 

IN r, (C) i (6) | tC 1 =) 2 3 12 Cto Ag ~ Az 
ifr = 110 only the O1 + 000 B to Ag ~ Ais 

flags will be affected 

INI Go © x Cz 10 ot Ce 4 16 Co 
B 8 10 100 010) —Ae B to Ag ~ Ai5 
HE — HL + 1 «© 

INIR co © x sz 5 21 Cos 3, 
B-—- B-1 ve 168 6 @ B2 (if B#0) B to Ag ~ Ais 
HL - HL 4 1 . 2 4 16 
Repeat until | 6) 
B = 0 

IND (HL) — (C) © x ...—Oi<COizCOrrCOC@sSsS=SsSs=ss=< COs rst “CCiCB 4 16 C to Ag ~ Az 
B-—B-—1 10 101 010 AA B to Ag — Ais 
HL — HL 1 

INDR fee) (©) x we eee =D) 2 5 2) C10 Ao ~— A7 
B- B-I 10 111 010 BA (lf B#0) B to Ag — Ai5 

HL — HL—1 2 4 i) 

Repeat until (jf B=0) 

BO 
OUT (n), A (n) — A ° > © FF Ff a oe Oy D3 2 3 11 nto Ag ~ A7 

- - Acc. to Ag ~ Ais 
OUT (C), & (| 0 KX © XxX © £€ 6 11 101 101 i= 8) 2 3 12 C to Ao ~— A7 

Oi +f OO} B to Ag ~ Ais 

OUT (Ce) (at) x X § & KX Ue 11 0) 8) 2 4 16 C to Ag ~ AZ 
B- B-] 10 100 O11 A3 B to Ag ~ Ai5 
HE — HL + | 

OTIR (C) — (HL) x w = =. . 5 21 Cie Sy, 
B-B-] 10 110 O11 B3 (if B#0) B to Ag ~ Ai5 
HL — HL + 1 2 4 16 

Repeat until (if B = 0) 

Bee 

OUTD © Go x —. 140 101 4 16 Co 
B- B-1 10 101 O11 AB B to Ag — Ais 

HL — HL—1 

OTDR (@) (ae) x ~ % X§ Xs 11 101 10% ED 2 5 21 C to Ag ~— A7 

B- B-1 10 111 O11 (S40) B to Ag — Ais 

HL — HL-1 2 4 16 

Repeat until ies! 8) 

Be U 

NOTE Git the result of B — 1 is zero the Z {lag |s set, olherwise | 's resel 

Flag Notation. e flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown, 
iE Hl { flag is affected according to the result of the operation. 




